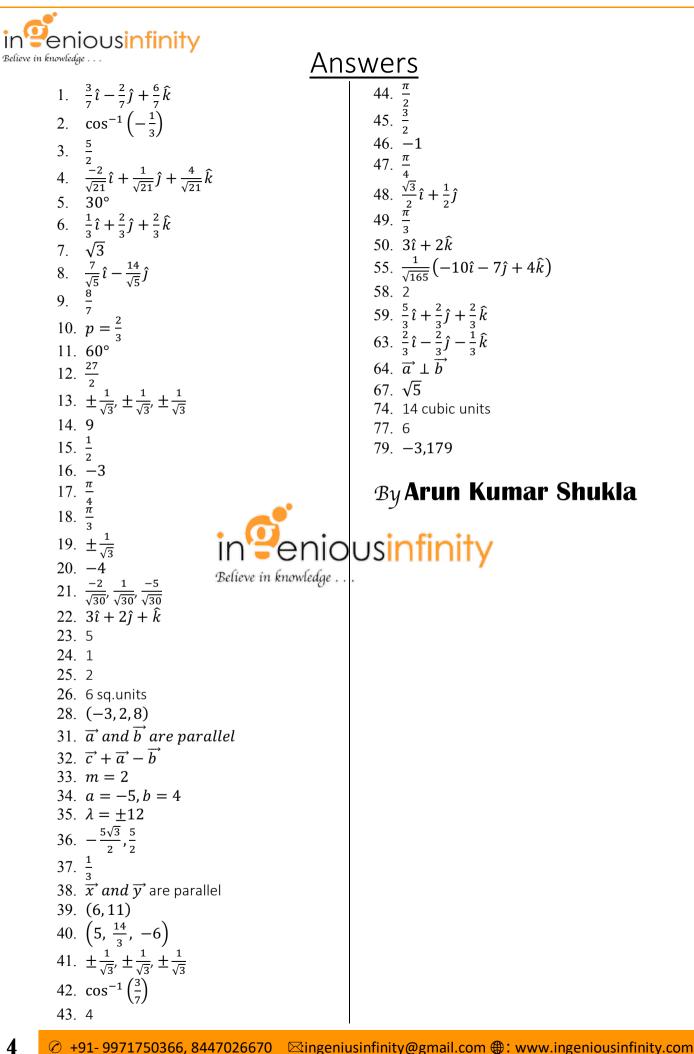
Vector

- Find a unit vector in direction of $\vec{a} = 3\hat{\imath} 2\hat{\jmath} + 6\hat{k}$. 1.
- Find the angle between the vectors $\vec{a} = \hat{i} \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} \hat{k}$ 2.
- 3. For what value of λ are the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + 3\hat{k}$ perpendicular to each other?
- 4. If $\vec{a} = \hat{i} + 2\hat{j} \hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} 5\hat{k}$, find a unit vector in the direction of $\vec{a} \vec{b}$.
- If $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 3$, find the angle between \vec{a} and \vec{b} . 5.
- If $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} + 9\hat{k}$, find a unit vector parallel to $\vec{a} + \vec{b}$. 6.
- 7. If $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and angle between \vec{a} and \vec{b} is 60°, find $\vec{a} \cdot \vec{b}$.
- 8. Find a vector in direction of $\vec{a} = \hat{\iota} 2\hat{\jmath}$ whose magnitude is 7.
- Find the projection of \vec{a} on \vec{b} if $\vec{a} \cdot \vec{b} = 8$ and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$. 9.
- 10. Write the value of p for which $\vec{a} = 3\hat{\imath} + 2\hat{\jmath} + 9\hat{k}$ and $\vec{b} = \hat{\imath} + p\hat{\jmath} + 3\hat{k}$ are parallel vectors.
- 11. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and when $|\vec{a} \times \vec{b}| = \sqrt{3}$.
- 12. Find the value of p, if $(2\hat{\imath} + 6\hat{\imath} + 27\hat{k}) \times (\hat{\imath} + 3\hat{\imath} + p\hat{k}) = \vec{0}$
- 13. Write the direction cosines of a line equally inclined to three coordinate axes. 14. If p is a unit vector and $(\vec{x} \vec{p}) \cdot (\vec{x} + p) = 80$ then find $|\vec{x}|$.
- 15. What is the cosine of the angle which the vector $\sqrt{2}\hat{\imath} + \hat{\jmath} + \hat{k}$ make with y-axis?
- 16. Find the value of λ , if $(2\hat{\imath} + 6\hat{\jmath} + 14\hat{k}) \times (\hat{\imath} \lambda\hat{\jmath} + 7\hat{k}) = \vec{0}$
- 17. If \vec{a} and \vec{b} are two vectors such that $|\vec{a},\vec{b}| = |\vec{a} \times \vec{b}|$ then what is the angle between \vec{a} and \overrightarrow{b} ?
- 18. Vectors \vec{a} and \vec{b} are such that $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = \frac{2}{3}$ and $(\vec{a} \times \vec{b})$ is a unit vector. Write the angle between \vec{a} and \vec{b} .
- 19. For what value of p, is $(\hat{i} + \hat{j} + \hat{k})p$ a unit vector?
- 20. For what value of a the vectors $2\hat{i} 3\hat{j} + 4\hat{k}$ and $a\hat{i} + 6\hat{j} 8\hat{k}$ are collinear?
- 21. Write the direction cosines of the vector $-2\hat{i} + \hat{j} 5\hat{k}$.
- 22. Write the position vector of the mid-point of the vector joining the points P(2,3,4) and Q(4,1,-2).
- 23. Find ' λ ' when the projections of $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ is 4 units.
- 24. Write the value of $(\hat{i} \times \hat{j})$. $\hat{k} + \hat{i}$. \hat{j} .
- 25. Write the value of $(\hat{\imath} \times \hat{\jmath})$. $\hat{k}(\hat{\jmath} \times \hat{k})$. $\hat{\imath}$
- 26. Write the value of the area of the parallelogram determine by the vectors $2\hat{i}$ and $3\hat{j}$.
- 27. Show that $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2$, if \vec{a} and \vec{b} are along adjacent sides of a rectangle.
- 28. Given $\overrightarrow{AB} = 3\hat{\imath} \hat{\jmath} 5\hat{k}$ are coordinates of the terminal point are (0, 1, 3). Find coordinates of the initial point.
- 29. Prove that $|\vec{a}.\vec{b}| \leq |\vec{a}||\vec{b}|$.
- 30. Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to axes.
- 31. If \vec{a} and \vec{b} are nonzero vectors, such that $\vec{a} \times \vec{b} = \vec{0}$. How are \vec{a} and \vec{b} related.

in $\mathcal{C}_{\mathcal{A}_{dge}}$ in $\mathcal{C}_{\mathcal{A}_{dge}}$ be position vectors of vertices A, B, C of parallelogram ABCD, find the position vector of D.


- 33. If \vec{a} , \vec{b} are the position vectors of the points (1, -1), (-2, m). Find the value of 'm' for which \overrightarrow{a} and \overrightarrow{b} are collinear.
- 34. If vectors $2\hat{\imath} 5\hat{\jmath} + b\hat{k}$ and $2\hat{\imath} + a\hat{\jmath} + 4\hat{k}$ are parallel, find the value of a and b.
- 35. If the position vector \vec{a} of point $(-5, \lambda)$ be such that $|\vec{a}| = 13$ find λ .
- 36. What are the vertical and horizontal components of a vector \vec{a} of magnitude 5 making an angle of 150° with direction of X-axis.
- 37. What is $a \in R$ such that $|a\vec{x}| = 1$ where $\vec{x} = \hat{i} 2\hat{j} + 2\hat{k}$?
- 38. When $|\vec{x} + \vec{y}| = |\vec{x}| + |\vec{y}|$?
- 39. If A is the point (4, 5) and vector \overline{AB} has components 2 and 6 along X-axis and Y-axis respectively then write point B.
- 40. What is the point of trisection of PQ nearer P if position of P and Q are $3\hat{i} + 3\hat{j} 4\hat{k}$ and $9\hat{\imath} + 8\hat{\jmath} - 10\hat{k}$ respectively.
- 41. What are the direction cosines of a vector equiangular with coordinate axes?
- 42. What is the angle which the vector $3\hat{\imath} - 6\hat{\imath} + 2\hat{k}$ makes with X-axis?
- 43. If $|\vec{a}| = 2$, $|\vec{b}| = 2\sqrt{3}$ and $\vec{a} \perp \vec{b}$ what is the value of $|\vec{a} + \vec{b}|$?
- 44. What is the angle between \vec{a} and \vec{b} , if $|\vec{a} \vec{b}| = |\vec{a} + \vec{b}|$?
- 45. What is the area of a parallelogram whose diagonals are given by vectors $2\hat{i} + \hat{j} 2\hat{k}$ and $-\hat{\imath} + 2\hat{k}$?
- 46. If \hat{i} , \hat{j} , \hat{k} are the usual three mutually perpendicular unit vectors then what is the value of \hat{i} . $(\hat{j} \times \hat{k}) + \hat{j}$. $(\hat{i} \times \hat{k}) + \hat{k}$. $(\hat{j} \times \hat{i})$?
- 47. What is the angle between \vec{x} and \vec{y} if $\vec{x} \cdot \vec{y} = |\vec{x} \times \vec{y}|$?
- 48. Write a unit vector in XY = plane, making angle of 30° with the positive direction of X axis. X - axis.
- 49. If \vec{a} and \vec{b} are unit vectors such that $(\vec{a} + 2\vec{b})$ is perpendicular to $(5\vec{a} 4\vec{b})$, then what is the angle between \vec{a} and \vec{b}

4 marks

- 50. Dot-product of a vector with vectors $3\hat{\imath} - 5\hat{k}$, $2\hat{\imath} + 7\hat{\jmath}$, $\hat{\imath} + \hat{\jmath} + \hat{k}$ are respectively -1, 6 and 5. Find the vector
- 51. If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, show that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$. Also interpret the result geometrically.
- 52. Show that $\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$
- 53. If $\vec{a} = 3\hat{\imath} \hat{\jmath} + 2\hat{k}$, $\vec{b} = 2\hat{\imath} + \hat{\jmath} \hat{k}$ and $\vec{c} = \hat{\imath} 2\hat{\jmath} + 2\hat{k}$, then show that $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$
- 54. For the vectors \vec{a} , \vec{b} , \vec{c} prove that $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) = \vec{0}$
- 55. Find a unit vector perpendicular to the plane ABC, where A, B, C are the points (3, -1, 2), (1, -1, -3), (4, -3, 1) respectively.
- 56. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, prove that $\vec{a} \vec{d}$ is parallel to $\vec{b} \vec{c}$, provided $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$.
- 57. If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors of equal magnitude, prove that the angle which $(\vec{a} + \vec{b} + \vec{c})$ makes with any of the vectors \vec{a} , \vec{b} or \vec{c} is $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$.
- 58. Find the projection of $\overrightarrow{b} + \overrightarrow{c}$ on \overrightarrow{a} , where $\overrightarrow{a} = 2\hat{\imath} 2\hat{\jmath} + \hat{k}$, $\overrightarrow{b} = \hat{\imath} + 2\hat{\jmath} 2\hat{k}$ and $\vec{c} = 2\hat{\imath} - \hat{\imath} + 4\hat{k}.$

59. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$, find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$.

- 60. If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$, show that angle between \vec{a} and \overrightarrow{b} is 60°
- 61. Show that area of parallelogram having diagonals $3\hat{i} + \hat{j} 2\hat{k}$ and $\hat{i} 3\hat{j} + 4\hat{k}$ is $5\sqrt{3}$ square units.
- 62. Define the scalar and vector product of two vectors \vec{a} and \vec{b} . If for three non-zero vectors \vec{a}, \vec{b} and $\vec{c}; \vec{a}, \vec{b} = \vec{a}, \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$.
- 63. Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$, where $\vec{a} = 3\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ and $\vec{b} = \hat{\imath} + 2\hat{\jmath} - 2\hat{k}$
- 64. If \vec{a} and \vec{b} are any two vectors, then give the geometrical interpretation of the relation $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$.
- 65. Show that angle between any two diagonals of a cube is $\cos^{-1}\left(\frac{1}{2}\right)$.
- 66. If \vec{a} , \vec{b} and \vec{c} are position vectors of A, B and C of a triangle ABC, show that area of a triangle is $\frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$
- 67. If $|\vec{a}| = 2$, $|\vec{b}| = 3$, $\vec{a} \cdot \vec{b} = 4$ find $|\vec{a} \vec{b}|$
- 68. If the sum of two unit vectors is a unit vector, prove that magnitude of their difference is $\sqrt{3}$.
- 69. For any vector \vec{a} , show that $\vec{a} = (\vec{a}.\hat{\imath}).\hat{\imath} + (\vec{a}.\hat{\jmath}).\hat{\jmath} + (\vec{a}.\hat{k}).\hat{k}$.
- 70. Prove that for non-zero vectors \vec{a} and $\vec{b} (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$ if and only if \vec{a} and \vec{b} are orthogonal.
- 71. If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq \vec{0}$, show that $\vec{a} + \vec{c} = m\vec{b}$. Where *m* is a scalar.
- 72. If $\vec{a} \times \vec{b} = \vec{a} \times \vec{c} \neq \vec{0}$, show that $\vec{b} = \vec{c} + t\vec{a}$. for some real number t.
- 73. For any three vectors \vec{a} , \vec{b} and \vec{c} show that $\vec{a} \vec{b}$, $\vec{b} \vec{c}$ and $\vec{c} \vec{a}$ are coplanar.
- $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} = 0$ and angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$. Prove that $\vec{a} = \pm 2(\vec{b} \times \vec{c})$.
- 76. For any two vectors \vec{a} and \vec{b} , prove that $(\vec{a} \times \vec{b})^2 = (\vec{a})^2 (\vec{b})^2 (\vec{a}, \vec{b})^2$
- 77. Define vector product $\vec{a} \times \vec{b}$ of two vectors \vec{a} and \vec{b} . If $|\vec{a}| = 2$, $|\vec{b}| = 5$, and $|\vec{a} \times \vec{b}| = 8$. Find the value of $\vec{a} \cdot \vec{b}$.
- 78. Define $\vec{a} \times \vec{b}$ and prove that $|\vec{a} \times \vec{b}| = (\vec{a}, \vec{b}) \tan \theta$ where θ is angle between \vec{a} and \vec{b} .
- 79. The volume of a parallelopiped, whose edges are $-12\hat{i} + \lambda \hat{k}$, $3\hat{j} \hat{k}$ and $2\hat{i} + \hat{j} - 15\hat{k}$ is 546 cubic units. Find the value of λ .
- 80. \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a} \times \vec{b} = \vec{c}, \vec{b} \times \vec{c} = \vec{a}$. Prove that $\vec{a}, \vec{b}, \vec{c}$ are mutually at right angles and $|\vec{b}| = 1$, $|\vec{c}| = |\vec{a}|$.
- 81. If \hat{a} and \hat{b} are two unit vectors and θ is the angle between them, then show that: $\sin\frac{\theta}{2} = \frac{1}{2} |\hat{a} - \hat{b}|.$
- 82. If any three vectors \vec{a} , \vec{b} , \vec{c} are coplanar, show that the vectors $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are also coplanar.

